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Abstract
The ballistic transport through a mesoscopic zigzag Rashba wire is studied via
the Green function technique and the spin transmission is investigated with an
unpolarized charge current injected. These results are compared with those
of a straight wire, and show that to generate a nonzero spin conductance in
the longitudinal direction, the mirror symmetry with respect to that direction
must be broken. This necessary condition is satisfied in the zigzag wire. Its
ballistic transport properties are also affected by the spin-dependent quantum
interference effect, resulting from the Rashba spin–orbit coupling and scattering
at corners and at interfaces between the wire and the leads. Mixing between
different pairs of transverse modes is crucial for spin transmission, and only
if more than one pair of modes are open can a measurable spin-polarized
current be obtained in the longitudinal direction. These results provide one
way to generate an artificially controllable spin-polarized current in mesoscopic
Rashba systems.

1. Introduction

One of the most important possibilities of nanoelectronics is the hope of using spin, in addition
to charge, for quantum information processing [1–3]. The basis of this application is the
generation of spin-polarized current and quantum control of coherent spin states. In several
proposals presented to surmount these two problems, taking advantage of the spin–orbit (SO)
coupling in semiconductors [4–7] has attracted a lot of attention. Due to inversion asymmetry
of the confining potential for a two-dimensional electronic gas (2DEG) in semiconductor
heterostructures, the Rashba SO coupling [8] plays an important role in electronic transport.
Although it may be erased by disorder in a bulk system, a pure spin current appears in the
transverse direction—the so-called spin Hall effect (SHE)—with an unpolarized electronic
current flowing through a mesoscopic Rashba system. This fact has been demonstrated
theoretically in mesoscopic Rashba rings [9, 10] and rectangular Rashba planes with their
sizes smaller than the coherence length [11–13]. However, in these regular structures, the
transparency of a spin-up electron along the longitudinal direction is always equal to that of a
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Figure 1. Schematic illustration of the structure.

spin-down electron. The coexistence of the SHE and the zero longitudinal spin conductance of
the z-component σz = 0 in the same systems is noticeable.

The Hamiltonian of 2DEG with Rashba SO coupling is [8]

H = �p2

2m∗ + α

h̄
(�τ × �p) · �ez + Vconf(x, y). (1)

Here, �τ is the Pauli operator, α the strength of the Rashba SO coupling and Vconf the
potential confining electrons to a mesoscopic region within the 2DEG. With the space-inversion
symmetry broken, the zero longitudinal spin conductance cannot be derived solely from the
time-reversal symmetry. Obviously, it must come from other high structural symmetries
possessed by those regular structures. In fact, the Hamiltonians of rings and rectangular planes
are invariant under reflection with respect to two mirrors: one is along the longitudinal direction
and the other is along the transverse direction. (Their Hamiltonians are also invariant under C2

rotation.) The former mirror symmetry results in the zero σz as we can see from the discussion
in section 3. Only structures without this type of mirror symmetry can generate nonzero σz . In
the present paper, spin transmission through a mesoscopic zigzag Rashba wire (cf figure 1) is
studied, where both of the two types of mirror symmetries are destroyed (but the C2 rotation
symmetry is reserved), and that necessary condition is satisfied in this system.

In a straight quantum wire with α = 0, a series of spin-degenerate transverse modes
can be formed. With the straight wire turned into a zigzag one, different transverse modes
can be mixed by corner scattering as well as by interface scattering. With the Rashba SO
coupling introduced, the spin degeneracy is lifted and |↑〉 and |↓〉 are not the eigenstates of
the system. When an electron passes through a 2DEG with Rashba SO coupling, its spin
oscillates on the scale of the spin precession length LSO = π h̄2

2m∗α . In ballistic transport through
mesoscopic Rashba systems, the spin-dependent quantum interference effect [9, 14–20] plays
an important role, and this interference effect can be artificially controlled by adjusting the
Rashba SO coupling strength α. The purpose of the present paper is to demonstrate that an
artificially controllable spin-polarized current can be generated in the longitudinal direction
through a mesoscopic zigzag Rashba wire.

For this purpose, we study the spin transmission through the zigzag wire via the Green
function technique [11, 12, 21, 22] together with the formalism of principal layers in the
framework of the surface Green function matching theory [21–24], assuming that the structural
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dimension is much smaller than the coherence length. The results of a straight wire with the
same width and length are also obtained as a comparison. Here, for numeric application
of the Green function technique, a tight-binding Hamiltonian, rather than the continuum
model (1), is adopted. As previous works show [9–13], these two models can give the same
results. According to our numeric results, with the mirror symmetries broken, nonzero σz can
really be found in this zigzag wire. Mixing between different pairs of modes is crucial for
spin transmission, and only if more than one pair of modes participate in transport can an
experimentally measurable spin conductance be obtained in the longitudinal direction. This
nonzero σz oscillates with the Rashba SO coupling. Our theoretical results provide one way to
generate an artificially controllable spin-polarized current in mesoscopic Rashba systems.

The organization of this paper is as follows. In section 2, the theoretical model and
the calculation method are presented. In section 3, the numerical results are illustrated and
discussed. A brief summary is given in section 4.

2. Model and formulae

In the present paper, we consider the ballistic transport through a mesoscopic zigzag Rashba
wire and investigate the spin transmission with an unpolarized charge current injected through
ideal leads. The results for a straight wire with the same length and width as the zigzag one
are presented as a comparison to show the influence of structural symmetry. Our attention is
also paid to the influence of corner scattering in the zigzag structure and how σz varies with the
Rashba SO coupling.

The corresponding zigzag and straight wires are schematically illustrated in figure 1. In
these two Rashba wires, the SO hopping parameter is tSO. Both of these two structures are LW

in length and WW in width, and each of them are connected with two ideal leads of the same
width WW. In these ideal leads, no SO coupling exists. The tunnelling matrix element between
the wire and the leads is tL. The Hamiltonian of the system can be written in the tight-binding
representation as [11–13]

H = HL + HR + HW + HT, (2)

where HL(R), HW and HT are the Hamiltonians of the left (right) lead, wire and tunnelling
between them. They are

HL = −t
∑

s

( −1∑

mx =−∞

WW∑

my=1

c†
(mx +1,my )s

c(mx ,my )s +
0∑

mx =−∞

WW−1∑

my=1

c†
(mx ,my+1)sc(mx ,my )s + H.c.

)
,

(3)

HR = −t
∑

s

⎛

⎝
∞∑

mx =mR
x +1

mT
y∑

my=mB
y

c†
(mx +1,my )s

c(mx ,my )s

+
∞∑

mx =mR
x +1

mT
y −1∑

my=mB
y

c†
(mx ,my+1)sc(mx ,my )s + H.c.

⎞

⎠ , (4)

HW = −
∑

s

{
t
∑

mx my

(
c†
(mx +1,my )s

c(mx ,my )s + c†
(mx ,my+1)sc(mx ,my )s

)

+ itSO

∑

s ′

(
c†
(mx +1,my )s

(τy)ss ′ c(mx ,my )s ′ − c†
(mx ,my+1)s (τx)ss ′ c(mx ,my )s ′

)+ H.c.

}
,

(5)

3



J. Phys.: Condens. Matter 19 (2007) 016209 Z-Y Zhang

HT = −tL
∑

s

⎛

⎝
WW∑

my=1

c†
(1,my)s

c(0,my)s +
mT

y∑

my=mB
y

c†
(mR

x +1,my )s
c(mR

x ,my )s + H.c.

⎞

⎠ . (6)

Here, c(mx ,my )s is the electronic annihilation operator at the site �m = (mx , m y) with the spin
index s = ↑ or ↓. The electronic movement in the transverse direction is restricted by the hard-
wall boundary condition adopted in the lateral sides of the wire and the leads. The meanings of
m R

x , m B
y and mT

y are illustrated in figure 1. With the z-axis set as the quantization direction,

τx =
(

0 1
1 0

)
, τy =

(
0 −i
i 0

)
and τz =

(
1 0
0 −1

)
.

The tight-binding Hamiltonian (2) is obtained from the effective mass Hamiltonian (1) by
employing the local orbital basis and has been successfully applied to quasi-1D and 2D
mesoscopic Rashba structures [9–13, 20]. It is related to the effective mass Hamiltonian (1)
via the relations t = h̄2/(2m∗a2), tSO = α/(2a) and LSO = π ta/(2tSO) with a the lattice
spacing. To obtain equation (2), the confining potential Vconf is assumed to be zero in the wire
and the leads, and infinity outside.

The Green function of the wire can be written as [11, 12, 21, 22]
(
G−1(ε)

)
�m �m′,ss ′ = εδ �m, �m′δs,s ′ − (HW) �m �m′,ss ′ − (�L(ε))my m′

y ,ss ′ δmx ,1δm′
x ,1

− (�R(ε))my m′
y,ss ′ δmx ,mR

x
δm′

x ,mR
x

(7)

where �m and �m ′ can only take sites on the wire. Here, �L(R) is the self-energy due to the left
(right) semi-infinite ideal leads. The expressions of them can be obtained from the formalism of
principal layers in the framework of the surface Green function matching theory with the help
of an iterative procedure [21–24]. Once they are known, the coupling function 	L(R) between
the left (right) lead and the wire can be easily obtained as

(	L)mym′
y ,ss ′ = i

(
�r

L − �a
L

)
my m′

y,ss ′ (8)

with 1 � m y, m ′
y � WW and

(	R)my m′
y,ss ′ = i

(
�r

R − �a
R

)
mym′

y ,ss ′ (9)

with m B
y � m y, m ′

y � mT
y . Here, the variable ε is omitted for conciseness of the expressions.

Then, the transmission matrix T (LR) can be written as

T (LR)

my m′
y ,ss ′ =

∑

m′′
y m′′′

y ,s ′′s ′′′

(√
	L

)

my m′′
y,ss ′′

× Gr
(1,m′′

y )(m
R
x ,m′′′

y ),s ′′s ′′′

(√
	R

)

m′′′
y m′

y ,s
′′′s ′

, (10)

where Gr is the retarded Green function of the wire with ε replaced by ε+iη in equation (7). To
obtain the square root of the matrix 	L(R), it is first expanded as 	L(R) = U †

L(R) DL(R)UL(R) with
DL(R) a diagonal matrix. Because of the spin degeneracy in the leads, the above four equations
can be further simplified.

The transmission coefficient of a spin-s electron incident from the left lead to be
transmitted to the right lead as a spin-s ′ electron is

T (LR)

ss ′ =
WW∑

my=1

mT
y∑

m′
y=mB

y

∥∥∥T (LR)

my m′
y,ss ′

∥∥∥
2
. (11)

From the Landauer–Büttiker formula, the conductance of an electron at the Fermi surface εF is

σ =
∑

ss ′
T (LR)

ss ′ (εF) (12)
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Figure 2. σ–εF curves for straight and zigzag wires with tSO = 0 (a) and 0.1 (b). (c) Details of
two conductance steps with tSO = 0 (dotted) and 0.1 (solid). (d) σz–εF curves with tSO = 0.1 for
the straight (dotted) and zigzag (solid) wires. The other parameters are tL = t = 1, LW = 60,
WW = 12 and mT

y = 36.

with the unit e2/h omitted. Here, the temperature is set as zero. Similarly, the spin conductance
of the z-component is

σz =
∑

s

(
T (LR)

s↑ (εF) − T (LR)

s↓ (εF)
)

, (13)

with the unit e
4π

omitted.
In this method, the self-energy �L(R) is obtained strictly via numeric calculation, and,

consequently, scattering at corners and interfaces between the wire and the leads is treated
exactly. With the help of this numerically strict method, the influences of structural symmetry
and Rashba SO coupling on σz can be studied in detail.

3. Results and discussion

The variations of σ and σz with the Fermi energy εF are plotted in figure 2. In the system of
a straight wire, due to confinement in the transverse direction, a series of eigenmodes can be
formed in the wire as well as in the leads. Without the Rashba SO coupling, the eigenmodes in
the wire are identical to those in the leads. Since tL is always set as tL = t in our calculation,
no interface scattering occurs in this system, and a series of conductance steps is formed in
the σ–εF curve with each step height being 2. With tSO 	= 0, the spin degeneracy of the
eigenmodes in the wire is lifted. This leads to interface scattering, but because tSO is set as
0.1 here, its influence is weak (cf figure 2(c)). Despite the lifting of the spin degeneracy, the
transparency of an initial spin-up electron is still equal to that of a spin-down electron and
σz = 0. With the straight wire turned into a zigzag one, those eigenmodes can still be formed
in every straight part of the zigzag structure so that the basic characteristic of conductance steps
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remains. But unlike the straight wire, σ fluctuates in each step due to corner scattering, and the
average heights of those steps are reduced, except that around εF = 0, which is always 2WW.
Furthermore, with the Rashba SO coupling introduced into the zigzag one, the transparency of
an initial spin-up electron is no longer equal to that of an initial spin-down electron. As a result,
the spin conductance of the z-component is nonzero, σz 	= 0 (cf figure 2(d)).

The reason for this great difference in spin transmission can be resolved by analysing
the continuum Hamiltonian (1). As we have said, for a straight wire, the Hamiltonian is
invariant under reflection with respect to two mirrors. One is along the transverse direction
with (x → −x), (px → −px) and (τy, τz → −τy,−τz), and the other is along the
longitudinal direction and has the same transformation relation with x and y exchanged. Here,
for simplicity of discussion, the origin of the axis system is moved to the symmetric centre
of the structure. According to the former mirror symmetry, T (LR)

ss ′ = T (RL)

s̄ s̄ ′ , whereas from
the latter, it can be obtained that T (LR)

ss ′ = T (LR)
s̄ s̄ ′ , which means that T (LR)

↑↑ = T (LR)
↓↓ and

T (LR)
↑↓ = T (LR)

↓↑ . This results in zero σz . Obviously, to obtain nonzero σz , the latter mirror
symmetry must be broken. With a straight wire turned into a zigzag one, these two types
of mirror symmetry are both destroyed. But in this system, the C2 rotation symmetry is still
reserved; that is, the Hamiltonian (1) is invariant under the transformation (x, y → −x,−y),
(px, py → −px,−py) and (τx , τy → −τx ,−τy), which means that T (LR)

ss ′ = T (RL)
ss ′ . Because

of the time-reversal symmetry, which corresponds to a transformation (�r → �r), ( �p → − �p)

and (�τ → −�τ ), T (LR)
ss ′ = T (RL)

s̄ ′ s̄ . Together with the C2-rotation symmetry, we obtain the relation
T (LR)

ss ′ = T (LR)

s̄ ′ s̄ . This means that T (LR)
↑↑ = T (LR)

↓↓ , which can be proved by checking the numeric

data. However, from the C2-rotation and time-reversal symmetries, the relation T (LR)
↑↓ = T (LR)

↓↑
cannot be derived and σz = 0 is not guaranteed. Of course, this does not mean that nonzero
σz can be found in any zigzag wire even with spin degeneracy. To generate a spin-polarized
longitudinal current in this zigzag Rashba wire, the Rashba SO coupling plays an important
role.

Now, we turn our attention to how σ and σz vary with tSO. These results are illustrated in
figure 3, and they are obtained for wires of width WW = 12 as in figure 2. The influence of
the Rashba SO coupling on the particle and spin transmission is weak when tSO < 0.1. With
tSO further increased, both σ and σz oscillate aperiodically. At εF = −3.8, (cf figures 3(a)–
(c)) where only the lowest pair of transverse modes are open, a series of resonant peaks and
destructive zeros can be formed in the σ–εF curves in both straight and zigzag wires, whereas
at εF = −3, (cf figures 3(d)–(f)) where there are four open pairs of transverse modes, neither
resonant peak nor destructive zero can be found, which means that resonance or destruction
cannot be reached synchronously by transmission through different pairs of modes. A similar
dephasing phenomenon has also been found in multichannel mesoscopic Rashba rings [20].
Here, in the straight wire, the spin-dependent quantum interference effect is only caused by
interface scattering, whereas in the zigzag one, it is also related to corner scattering. Only
in the zigzag wire can nonzero σz be found. With respect to σz , the most striking difference
between the situations with εF = −3.8 and −3 is that in the former σz is seven orders smaller
in magnitude than that in the latter, where σz ∼ 0.1. Obviously, this difference must be related
to the fact that in the former only one pair of modes participate in transmission, whereas in the
latter, there are four open pairs.

To clarify this point, we consider the spin transmission through a zigzag Rashba wire of
width WW = 2, where there are at most two open pairs of modes. These results are illustrated
in figures 4 and 5. As in the wire with WW = 12, a step-like structure can be found in the σ–εF

curve with the step edges located at εF = 1 and 3, which correspond to the energies where the
number of open pairs changes from two to one and from one to zero, respectively. Only in the
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Figure 3. σ–tSO and σz–tSO curves at εF = −3.8 ((a)–(c)) and −3 ((d)–(f)) in zigzag (solid) and
straight (dotted) wires. The other parameters are the same as in figure 2.

Figure 4. σ–εF and σz –εF curves for zigzag wires with WW = 2 ((a) and (b)) and 3 ((c) and (d)) at
tSO = 0.1. The other parameters are the same as in figure 2.

region with one open pair of modes can resonant tunnelling be reached. With more than one
open pairs, a dephasing phenomenon is unavoidable except at εF = 0, where the tunnelling
through different pairs of modes can reach resonance simultaneously. The spin conductance σz

oscillates quickly with εF if both pairs are open. With only one open pair, σz is greatly reduced,
and because it is several orders smaller in magnitude than that in the region with εF < 1, it
looks like zero. (Of course, it is zero only in the region where all pairs of modes are inactive.)
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Figure 5. σ–tSO and σz–tSO curves for zigzag wires with WW = 2 at εF = 0.9 ((a) and (b)) and 1.1
((c) and (d)) with the same other parameters as in figure 2.

Besides the results of the zigzag wire of width WW = 2, those of WW = 3 are also presented in
figure 4. They exhibit the same basic characteristics, and one remarkable fact is that with the
number of open pairs increased from two to three, a step-like structure cannot be found in the
σz–εF curve. A similar phenomenon can also be found in the case with WW = 12. Comparing
the results of WW = 2 and 3 with those of WW = 12, we can see that the oscillation range
of σz increases with the wire width, but not proportionally. In figure 4, only the results with
εF � 0 are illustrated since σ(εF) = σ(−εF) and σz(εF) = −σz(−εF) due to the particle–hole
symmetry.

In figure 5, the σ–tSO and σz–tSO curves are plotted for a zigzag wire of width WW = 2
at two different Fermi energies: one corresponds to two open pairs of modes and the other to
one. In the latter situation, σ can reach resonance whereas it cannot in the former. Meanwhile,
in the latter situation, σz is generally nine orders smaller in magnitude than that in the former.
All of these results mean that mixing between different pairs of modes is crucial for generating
experimentally measurable spin-polarized current in these mesoscopic zigzag Rashba wires.
Here, the oscillation amplitude of σz increases with tSO in both situations, whereas in the wider
wire with WW = 12, this monotonic increase is not found. This difference can be seen more
clearly by comparison of figures 3(c) and 5(d), where only one pair of modes is open. This
demonstrates the influence of those unoccupied modes on transport properties.

In this paper, a mesoscopic zigzag Rashba structure is presented to show a spin-polarized
current can be generated along the longitudinal direction in Rashba systems. From symmetry
analysis, to have nonzero σz , it is necessary only to break the mirror symmetry with respect
to the longitudinal direction, and many other structures, even those with left–right symmetry,
satisfy this condition. For example, in a mesoscopic Rashba wire with a triangular structure,
although the left–right symmetry is still reserved, the mirror symmetry with respect to the
longitudinal direction is broken. From the left–right and time-reversal symmetries, the relation
T (LR)

ss ′ = T (LR)
s ′s is obtained so that T (LR)

↑↓ = T (LR)
↓↑ , but since the relation T (LR)

↑↑ = T (LR)
↓↓ cannot

be guaranteed in this structure, it is still possible to find nonzero σz if Rashba SO coupling is
introduced.

8
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In all of the above investigation, the influence of impurity scattering is not taken into
account. With one impurity randomly located on the wire, any structural symmetry will be
destroyed no matter whether the wire is a straight or zigzag one, and the corresponding σz is
generally nonzero. But usually, the wire contains a lot of impurities, and they are distributed
randomly. In this random system, what we are interested in are ensemble-averaged variables.
In the process of ensemble averaging, the structural symmetry is recovered. As a result, the
ensemble-averaged 〈σz〉 is zero for a straight wire, whereas it is nonzero for a zigzag one, as
discussed above, although its specific value is depressed by the randomness.

4. Summary

In summary, ballistic transport through a mesoscopic zigzag Rashba wire is studies via the
Green function technique, and the transmission of particles and spins is investigated with an
unpolarized charge current injected. These results are compared with those of a straight wire.
The symmetry analysis shows that in Rashba systems, only structures without mirror symmetry
with respect to the longitudinal direction are possible for generating nonzero σz . This necessary
condition is satisfied in the zigzag wire. In this system, the Rashba SO coupling lifts the spin
degeneracy, and the scattering at corners, as well as at interfaces, mixes the transverse modes.
The ballistic transport properties are influenced by the spin-dependent quantum interference
effect. Mixing between different pairs of modes is crucial for spin transmission, and only
if more than one pair of modes participate in transport can experimentally measurable σz be
found. This nonzero σz varies with tSO. Our theoretical results provide one way to generate an
artificially controllable spin-polarized current in mesoscopic Rashba systems.
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